Preparation of Cuprous Oxide Mesoporous Spheres with Different Pore Sizes for Non-Enzymatic Glucose Detection
نویسندگان
چکیده
Mass transfer plays a significant role in a sensor's performance, because the substrate can be detected only when it contacts with the active catalytic surface. In this work, cuprous oxide mesoporous nanospheres (Cu₂O MPNS) with different pore size distributions are fabricated and applied as electrocatalysts for glucose detection. The small pore Cu₂O (SP-Cu₂O, mean pore size of 5.3 nm) and large pore Cu₂O (LP-Cu₂O, mean pore size of 16.4 nm) spheres are prepared by the template method and an etching treatment. The obtained two kinds of Cu₂O MPNS exhibit high porosity with a similar specific surface area of 61.2 and 63.4 (m²·g-1), respectively. The prepared Cu₂O MPNS are used to construct an electrochemical non-enzymatic glucose sensor. The results show that the LP-Cu₂O exhibits better performance than SP-Cu₂O, which illustrates that the internal diffusion takes a great impact on the performance of the sensor. The LP-Cu₂O modified electrode possesses a high and reproducible sensitivity of 2116.9 μA mM-1·cm-2 at the applied potential of 0.6 V with a wide detection range of 0.003-7.8 mM and a low detection limit of 0.42 μM.
منابع مشابه
Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry (DPV) and Other Voltammetry Methods and Comparing to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution
A cuprous oxide (Cu2O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50-200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in...
متن کاملA Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution
A cuprous oxide (Cu₂O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50-200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in...
متن کاملPreparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls.
Transition-metal-oxide materials possessing ordered mesoporosity have recently attracted significant research interest due to their numerous potential applications. Among them, ordered mesoporous zinc oxide (ZnO) is a very tempting material because of the importance of ZnO in heterogeneous catalysis. Here, first results of the preparation of ordered mesoporous ZnO materials by using different t...
متن کاملPreparation and Characterization of Double Shell Fe3O4 Cluster@Nonporous SiO2@Mesoporous SiO2 Nanocomposite Spheres and Investigation of their In Vitro Biocompatibility
Background: Multifunctional core-shell magnetic nanocomposite particles with tunable characteristics have been paid much attention for biomedical applications in recent years. A rational design and suitable preparation method must be employed to be able to exploit attractive properties of magnetic nanocomposite particles. Objectives: Herein, we report on a simple approach for the synthesis of m...
متن کاملSynthesis and Characterization of N-Doped Porous TiO2 Hollow Spheres and Their Photocatalytic and Optical Properties
Three kinds of N-doped mesoporous TiO₂ hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol-gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2018